Computing 2016-17

The Computing curriculum focuses on computational thinking and creativity, in order to better understand the world around us. Here at Richard Coates, we aim to equip pupils with the skills to develop ideas via programming and use information technology skillfully. Pupils are educated to use technology in a responsible manner, with e-safety and cyberbullying being taught at the beginning of each academic year.

Key stage 2 (some of the content is covered in Year 4);

  • design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts
  • use sequence, selection, and repetition in programs; work with variables and various forms of input and output
  • use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs
  • understand computer networks, including the internet; how they can provide multiple services, such as the World Wide Web, and the opportunities they offer for communication and collaboration
  • use search technologies effectively, appreciate how results are selected and ranked, and be discerning in evaluating digital content
  • select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and content that accomplish given goals, including collecting, analysing, evaluating and presenting data and information
  • use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a range of ways to report concerns about content and contact

Key stage 3 (some of the content is covered in Year 9);

  • design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems
  • understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem
  • use 2 or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions
  • understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal]
  • understand the hardware and software components that make up computer systems, and how they communicate with one another and with other systems
  • understand how instructions are stored and executed within a computer system; understand how data of various types (including text, sounds and pictures) can be represented and manipulated digitally, in the form of binary digits
  • undertake creative projects that involve selecting, using, and combining multiple applications, preferably across a range of devices, to achieve challenging goals, including collecting and analysing data and meeting the needs of known users
  • create, reuse, revise and repurpose digital artefacts for a given audience, with attention to trustworthiness, design and usability
  • understand a range of ways to use technology safely, respectfully, responsibly and securely, including protecting their online identity and privacy; recognise inappropriate content, contact and conduct, and know how to report concerns